Fuchsian Differential Equation for the Perimeter Generating Function of Three-choice Polygons
نویسندگان
چکیده
Using a simple transfer matrix approach we have derived very long series expansions for the perimeter generating function of three-choice polygons. We find that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We perform an analysis of the properties of the differential equation.
منابع مشابه
Exact Solution of Two Planar Polygon Models
Using a simple transfer matrix approach we have derived long series expansions for the perimeter generating functions of both three-choice polygons and punctured staircase polygons. In both cases we find that all the known terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We report on an analysis of the properties of the differential equ...
متن کاملThe perimeter generating function of punctured staircase polygons
Using a simple transfer matrix approach we have derived very long series expansions for the perimeter generating function of punctured staircase polygons (staircase polygons with a single internal staircase hole). We find that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We perform an analysis of the properties of the differ...
متن کاملExact perimeter generating function for a model of punctured staircase polygons
We have derived the perimeter generating function of a model of punctured staircase polygons in which the internal staircase polygon is rotated by a 90° angle with respect to the outer staircase polygon. In one approach we calculated a long series expansion for the problem and found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of o...
متن کاملThe exact perimeter generating function for a model of punctured staircase polygons
We have derived the perimeter generating function of a model of punctured staircase polygons in which the internal staircase polygon is rotated by a 90◦ angle with respect to the outer staircase polygon. In one approach we calculated a long series expansion for the problem and found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of o...
متن کاملFuchsian differential equations from modular arithmetic
Counting combinatorial objects and determining the associated generating functions can be computationally very difficult and expensive when using exact numbers. Doing similar calculations modulo a prime can be orders of magnitude faster. We use two simple polygon models to illustrate this: we study the generating functions of (singly) punctured staircase polygons and imperfect staircase polygon...
متن کامل